Pranav Gangwar

linkedin.com/pranavgangwar || github.com/pranavgangwar

Delhi, India

UCSD

Aug. 2014 – Jun 2018

SUMMARY

Interested in pursuing a research career in Domain Specific Accelerators especially for Machine Learning, Hyperdimensional Computing, and Homomorphic Encryption.

EDUCATION

•	University of California, San Diego	San Diego, US
	PhD in Computer Engineering; GPA: 4.0/4.0	Sep. 2021
	Coursework : Computer Architecture (CSE 240A), VLSI for Machine Learning (ECE 284),	Operating Systems
	(CSE 120), Hyperdimensional Computing(CSE 291)	

• Delhi Technological University BTech in Electronics and Communication; Aggregate: 83.33%

PUBLICATIONS

• Hardware/Software Co-Design of a High-Speed Othello Solver	Dallas, USA
IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)	August 2019
• Novel Control Unit Design for a High-Speed SHA-3 Architecture	Dallas, USA
IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)	August 2019

RESEARCH PROJECTS

Bit Serial CNN Accelerator	SEE Lab
 Proposed an architecture that takes advantage of the novel bit skipping concept 	
 Ensured maximal reuse of the data stored on chip 	
Homomorphic Encryption Accelerator	SEE Lab
 Designing a complete end-to-end system working on Homomorphic Encryption scheme 	
ACADEMIC PROJECTS	UCSD
ACADEMIC PROJECTS	UCSD Fall 2021
ACADEMIC PROJECTS • Systolic Array Implementation for VGGNet	Fall 2021

- Parallelized and overlapped the partial sum addition with the Processing Element working
- Code written in System Verilog, tested with golden vectors generated in PyTorch and synthesized on Quartus

• Dynamic Branch Predictor

in partial fulfillment of the course CSE 240A - Principles of Computer Architecture Fall 2021

- o Implemented Gshare & Tournament predictors with Branch Target Buffer(BTB) and analyzed misprediction rates
- Designed a Hierarchical Branch Predictor that produced lower misprediction rate compared to above ones

PROFESSIONAL EXPERIENCE

•	Texas Instruments	Bangalore, India
	Digital Design Engineer	July 2018 - July 2021
	• Designed entire back-end of blocks: Floorplan, Placement, Clock Tree Synthesis, and Routing	
	 Performed Timing and Physical Verification sign-off checks 	
	• Helped restructure pipeline of blocks to meet stringent input-output timing constraints	

- Created an area-efficient Transpose filter script that generated designs with lower area than hand-coded RTL
- Developed Total Power Recovery flow which reduced power by taking advantage of lower pessimism of Sign-off than P&R

TECHNICAL SKILLS

- Languages: C, Verilog, Python, Tcl, Shell
- Softwares: PyTorch, Innovus[™], Tempus[™], Voltus[™], PVS, Assura[®], Vivado [®], MATLAB [®], PSpice